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LETTER TO THE EDITOR 

Dissipative bifurcation ratio in the area-non-preserving 
Henon map? 

B Hu 
Department of Physics, University of Houston, Houston, Texas 77004, USA 

Received 20 July 1981 

Abstract. The transition from periodic to chaotic behaviour via a period doubling route is 
studied for dissipative systems. The bifurcation ratio which characterises such a transition is 
calculated for the area-non-preserving H6non map by using a simple renormalisation group 
method. It is seen that there exists a smooth transition from the conservative case to the 
dissipative case. This approximate renormalisation group calculation agrees well with the 
numerical result obtained recently by Zisook. 

The transition from periodic to chaotic behaviour of a deterministic system has become 
a subject of intense research recently. The discovery of period doubling (Metropolis et 
a1 1973, May 1976), universality (Feigenbaum 1978, 1979a, b), and its experimental 
support (Libchaber and Maurer 1980, Gollub et a1 1981) has created even more 
interest. 

The relevance of the ideas of the renormalisation group to the study of turbulence 
was first pointed out by Wilson in his study of critical phenomena. This view was 
reiterated by Feigenbaum (1978, 1979a, b). A theoretical basis for the utility of the 
renormalisation group approach was provided by Derrida eta1 (1978,1979) when they 
discovered the important self -similarity property of the MSS sequences. Simple renor- 
malisation group methods have been applied to calculate the universal bifurcation 
ratios in both the one-dimensional quadratic map and the two-dimensional area- 
preserving map (Bennetin et a1 1980, Bountis 1981, Derrida et a1 1979, Derrida and 
Pomeau 1980, Greene et a1 1981, Grossman and Thomae 1977, Helleman 1980). The 
results are remarkably good. 

The one-dimensional quadratic map is dissipative, whereas the two-dimensional 
area-preserving map is conservative. Moreover, in realistic physical systems, it is almost 
inevitable that some dissipation occurs. Therefore, to understand the transition 
between a dissipative map and a conservative one, and to provide a probably more 
realistic description of physical systems, it seems worthwhile to study how the bifur- 
cation ratios change as a function of dissipation. We are therefore led to study the 
area-non-preserving two-dimensional HCnon map. 

The general HCnon map (HCnon 1969, 1976) is described by the transformation 

H :  XI= 1-pUx*+y 
Y ’  = bx. 
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The Jacobian of this transformation is equal to - b. When b = -1, it reduces to the 
area-preserving case. For convenience we shall call b the dissipation parameter. If we 
linearise the transformation in the neighbourhood of the elements xi of an n -cycle, the 
map becomes 

The eigenvalues of this matrix are 

A n ( @ ,  b)=-fn(cl., b)*Cfi(p,  b)-l)'". (3) 

X *  = (2p)-'{(b - 1) * [4p + (b  - 1)2]1/2} 

The lowest two cycles can be easily calculated. The elements are respectively 

( n  = 11, (4) 

xT = (2p)-l{(l-  b )  f [4p - 3(b - 1)211/2} 

x; = (2p)-'{(1 - b )  [4p -3(b - 1)2]1/2} 
( n  = 2). 

The functions fn are therefore 

f l (F ,  6) = 3 { ( b  - 1) f r4p + (b  - 1)211/2}, 

f2(p, b )  = 2p - 2b2  + 3 b  - 2. 

(6) 

( 7 )  
For systems undergoing period doubling, an approximate renormalisation group 

calculation consists in establishing a recursion relation by equating the eigenvalues in an 
n-cycle with parameter ,u to those in a 2n-cycle with parameter p ' .  In this case it is 
equivalent to equating the fn, i.e. 

f n b ,  b )  = f i n ( @ ' ,  b) .  (8) 

The fixed point p* of this recursion relation then gives the approximate limit point of 
the period doubling sequence: 

fn(p*, b )  = f z n ( p * ,  b) .  

S ( b ) = d w ( b ) l d ~ ' ( b )  I F * .  
The bifurcation ratio S (6) can then be easily obtained: 

The lowest-order renormalisation group calculation 
quadratic equation for p * :  

(9) 

(10) 

then gives the following 

4 / ~ * ~ - ( 8 b ~ -  10b  +7)p*  +(2b2-2b  + 1)(2?+3b +2)  = 0. 

6(b)=2[(b - 1)2+4p*]1'2. (12) 

(11) 

The expression for S ( b )  as a function of the dissipation parameter b is 

For the special cases b = 0 (the one-dimensional dissipative quadratic map) and b = -1 
(the two-dimensional conservative H6non map), the known values for S are regained: 

S(0) = 5.1231 (numerical 4.6692)) 

S (  -. 1) = 9.0623 (numerical 8.721 1). 

For the general case, a graph of S ( n )  is shown in figure 1. We see a smooth transition 
from the dissipative case to the conservative case as the dissipation parameter is 
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Figure 1. The bifurcation ratio 6 (upper curve) and the limit point cc.* (lower curve) as a 
function of the dissipation parameter b. 

changed. Since both dissipative and conservative systems are available for study 
experimentally, it will be interesting to observe this transition. 

As our calculation is based on a lowest-order renormalisation group recursion 
relation, the result is indeed only approximate. Recently Zisook (1981) has performed 
a numerical calculation of the effects of dissipation. The agreement is seen to be quite 
good (5-10%) in view of our simple lowest-order renormalisation group calculation. 
From previous experience, we expect the accuracy to be substantially improved when 
we go to higher orders. Such a study is under way. 

We would like to thank M Feigenbaum for discussion, A Zisook for providing us with a 
copy of his preprint and T K Lee for computer plotting. 
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